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Abstract

The paper presents a framework for creep modeling of materials exhibiting different behaviors in different loading

scenarios, such as tension, compression and shear, respectively. To this end an additive decomposition of the flow rule is

assumed into a sum of weighted stress mode related quantities. The characterization of the stress modes is obtained in

the octahedral plane of the deviatoric stress space in terms of a single scalar variable, such that stress mode dependent

scalar weighting functions can be constructed. Furthermore the numerical implementation into a finite element program

of the resulting set of constitutive equations and aspects of the sensitivity analysis for parameter identification are

addressed. Verification of the constitutive equations is succeeded for an aluminum alloy AK4-1T and a superalloy Ren�ee
95, respectively. In two finite element examples the proposed model is applied to investigate the relaxation behavior of a

square plate with circular hole and the evolution of creep damage in a gasturbine blade subjected to centrifugal and

thermal loads.
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1. Introduction

Creep is a phenomenon of progressive deformation of solid materials subjected to constant stress at

elevated temperatures. Dependent on the amount of stress and temperature the creep mechanisms within

the microstructure for metallic materials can be grouped into dislocation glide, dislocation creep, diffusion

creep and grain boundary sliding, see e.g. Ashby and Jones (1996, p. 187 ff), Dieter (1988, p. 445 ff), Riedel

(1987, p. 3 ff). Typically the resulting experimental effects exhibit the three stages of primary, secondary and

tertiary creep. The model development for the design of engineering structures then very often is based on
one type of experiment, where e.g. a tension test is a favorite type for metals.

However, extended experimental tests for many metallic materials exhibit different creep behaviors for

different loading types such as tension, compression and shear. For example test results for a superalloy

Ren�ee 95 in Stouffer and Dame (1996, p. 116), show, that for merely the same magnitudes of stress in tension

and compression the magnitudes of creep rates in tension are much greater than the corresponding rates in
* Tel.: +49-5251-602283; fax: +49-5251-603483.

E-mail address: rolf.mahnken@ltm.uni-paderborn.de (R. Mahnken).

0020-7683/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00388-3

mail to: rolf.mahnken@ltm.uni-paderborn.de


Vacancy Vacancy

(a)

(b)

Fig. 1. Metallographic causes of asymmetry: (a) Influence of diffusion: tensile stresses expand the lattice and reduce the resistance to

diffusion, whereas compressive stresses reduce the lattice dimensions and increase the resistance to diffusion. (b) Influence of micro-

cracks: cracks that are closed have only a small influence on the creep behavior under uniaxial compression, whereas in uniaxial tension

the creep rate in general is much greater.
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compression. As illustrated in Fig. 1 two metallographical explanations can be summarized as the main
sources of this effect.

To explain the first source we recall that diffusion is the dominate deformation mechanism of creep.

Then, tensile stresses expand the lattice and reduce the resistance to diffusion, whereas compressive stresses

reduce the lattice dimensions and increase the resistance for diffusion. The second source is due to the

progressive material deterioration of creep damage, where dependent on the amount of stress and tem-

perature, the microdefects can be grouped into microcracks, voids and pores. The resulting macrome-

chanical mechanisms, even if isotropic, may be different for different stress modes. For example,

microcracks that are closed have only a small influence on the creep behavior under uniaxial compression,
whereas in uniaxial tension the creep rate in general is much greater. It is also noteworthy that in addition

to the above mentioned characteristics in tension and compression a pure shear test may show a further

independent response.

The above phenomena are, from a more general point of view, examples of so-called asymmetric effects or

as denoted by Altenbach et al. (1995) non-classical effects. These are defined by the observation, that a certain
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type of experiment, such as a tension test, is not sufficient in order to characterize the material for different

loading scenarios. Instead, additional independent types of experiments, such as compression, shear and

hydrostatic tests, are necessary in order to get a more comprehensive (though in general still not complete)

characterization of the material. It should be emphasized, that the asymmetric effects examined in this paper
are restricted to isotropicmaterials, and therefore carefully have to be distinguished from the effects of initial

(material) anisotropy and induced anisotropy (such as a Bauschinger effect or damaged induced anisotropy).

Several publications can be found in the literature for simulation of inelastic material behavior with

asymmetric effects. Many of these approaches are based on a stress potential dependent on the stress tensor

and further state variables, which describe e.g. the state of hardening, softening or damage, respectively.

Typically, dependent on the symmetry of the considered material (e.g. isotropy, cubic, transversal sym-

metry) polynomial invariants of the stress tensor are incorporated into the potential. Along this line

constitutive equations within the field of plasticity have been formulated e.g. in Spitzig et al. (1975),
Altenbach (2001), Altenbach et al. (1995), Mahnken (2001), Zolochevskii (1989) amongst others. Ap-

proaches for asymmetric effects in creep are suggested in Altenbach et al. (1995), Betten et al. (1998),

Voyiadjis and Zolochevsky (1998), Voyiadjis and Zolochevsky (2000), Zolochevsky (1991) amongst others.

It appears from the above mentioned references that so far no common approach exists concerning the

best strategy for taking account individual loading scenarios in the constitutive equations. A general

agreement is the incorporation of odd power terms for odd invariants of stresses, see e.g. Spitzig et al.

(1975), Betten et al. (1999). Furthermore, a scalar variable, which is expressed in terms of the ratio of the

second and third basic invariant of the deviatoric stress tensor, can be used as an indicator for detection of
differences in the loading modes. This quantity, which will be called stress mode angle in this work, has been

applied e.g. in Zolochevskii (1990), Altenbach (2001), Ehlers (1995), Mahnken (2001).

This work makes extensive use of the stress mode angle for creep modeling with asymmetric effects. The

key idea consists in an additive decomposition of the inelastic strain rate, where each of the related

quantities incorporates a weighting function dependent on the stress mode angle. The advantage of this

approach is, that certain (though not all) material parameters, such as Norton-type constants, can be

obtained individually from specific loading modes such as tension, compression and shear, investigated

experimentally in the laboratory.
A further part of the paper is devoted to the numerical implementation of the constitutive relations,

which, regarding asymmetric inelastic effects, seems to have attracted little attention in the literature so far.

In particular the derivation of the algorithmic tangent operator for the equilibrium iteration and the

sensitivity terms for parameter identification, each of them consistent with the underlying integration

algorithm, are derived. The proposed integration algorithm and the algorithmic tangent operator have been

implemented into a general finite element program such as the UMAT subroutine of the commercial

program (ABAQUS-Version 6.3, 2002).

The structure of the paper is as follows: Section 2 presents a general framework for stress mode dependent
creep. In Section 3 stress mode related weighting functions are introduced, which are incorporated into a

prototype model of Section 4. Aspects of the numerical implementation into general finite element programs

and into gradient-based optimization programs for parameter identification are outlined in Section 5. In

Section 6 four examples exhibiting asymmetric effects are presented: in the first two examples verification of

the constitutive equations is succeeded for an aluminum alloy AK4-1T and a superalloy Ren�ee 95, respec-

tively. Furthermore, in two finite element examples the proposed model is applied to investigate the relax-

ation behavior of a square plate with circular hole and the evolution of creep damage in a gasturbine blade.

1.1. Notations

Square brackets [�] are used throughout the paper to denote �function of� in order to distinguish from
mathematical groupings with parenthesis (�).
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2. A general framework for stress mode dependent creep

In the remainder of this work the standard additive decomposition of the second-order total strain

tensor e is assumed, i.e.
e ¼ eel þ ein ð1Þ
Here, as usual the elastic strain tensor eel is related to the stress tensor r by Hooke�s law
r ¼ C : eel ð2Þ
where C is the fourth-order elasticity tensor. The second-order inelastic strain tensor ein is obtained from

evolution equations for the strain rate tensor _eein, where _ðð:Þ represents the time derivative. Many publications

have been devoted to the issue of formulating appropriate evolution equations. An extensive overview on

different concepts, such as the creep potential theory and the tensor function theory, has recently been

published by Betten (2001).

In the following exposition a stress mode related approach according to the following structure is

proposed:
1: _eein ¼
XS

i¼1

wi
_FFidi; where

2: _FFi ¼ _FFi½r; q; . . . ; j�

3: di ¼ di½r; q; . . . ; j�

4: _qq ¼ _qq½r; q; . . . ; j�

5: wi ¼ wi½r�

ð3Þ
Eq. (3.1) represents the additive decomposition of the inelastic strain rate tensor into S stress mode related

quantities. Each of them incorporates a scalar flow factor _FFi and a tensorial flow direction di, both dependent
on the stress tensor r, a set of structural (internal) variables q and also a vector of material parameters j.

Furthermore, in the above skeleton structure (3) a weighting function wi is associated to each mode i, which
is dependent on the stress tensor r, and for which it is stipulated that
1:
XS

i¼1

wi½r� ¼ 1

2: wi½rj� ¼ dij

ð4Þ
Here the stress tensors ri, i ¼ 1; 2; . . . ; S refer to independent characteristic stress modes, which for example

can be investigated experimentally in tension, compression and shear, respectively. Furthermore we remark,

that Eq. (4.1) can be regarded as a completeness condition, whereas Eq. (4.2) constitutes a normalization

condition for the weighting functions.

The above Eqs. (3) are regarded as very general, thus including also anisotropic material behavior. In

particular these can be viewed as an extension of the framework based on elastic projection operators, see

e.g. Mahnken (2002) and references therein. However, in the sequel of this work we restrict ourselves to

isotropic materials, and the aspect of anisotropy combined to stress mode dependent material behavior
shall be regarded at a later stage.
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3. Stress mode related weighting functions

In the remainder of this work, we will concentrate on the three independent stress modes for tension,

compression and shear with applications to isotropic materials. Following the same procedure as exten-
sively outlined by Ehlers (1995), these modes can be represented in the octahedral plane of the associated

deviatoric stress tensor. To this end the quantities
Fig. 2.

triangl

mode

tension
1: h ¼ 1

3
arccos½n�; where

2: n ¼
ffiffiffiffiffi
27

p

2

J3
ðJ2Þ3=2

3: Ji ¼
1

i
1 : ri

dev; i ¼ 2; 3

ð5Þ
are defined. Here h shall be referred to as the stress mode angle dependent on the stress mode factor n.
Furthermore in the above Eq. (5.3) J2 and J3 denote the second and third basic invariant of the deviatoric

stress tensor rdev, respectively, and the second-order unity tensor 1 has been introduced.

A graphical interpretation of the stress mode angle h is given at the top of Fig. 2. In particular it becomes

apparent, that the independent stress modes of tension, compression and shear are characterized by the

stress mode angles
Top: Octahedral plane in the deviatoric stress space. Here r0
1, r

0
2, r

0
3 denote the principal deviatoric stresses. Circles, squares and

es represent stress modes of tension, compression, and shear, respectively. Middle: Weighting functions (9) in terms of the stress

angle h for tension, compression and shear mode. Bottom: Weighting functions (10) in terms of the stress mode angle h for

and compression.
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1: tension: h1 ¼
2p
3
n; n ¼ 0; 1; 2; . . .

2: compression: h2 ¼
2p
3
nþ p

3
; n ¼ 0; 1; 2; . . .

3: shear: h3 ¼
p
3
nþ p

6
n ¼ 0; 1; 2; . . .

ð6Þ
and for each of the stress modes the following periodicity angles
1: tension: ~hh1 ¼
2p
3

2: compression: ~hh2 ¼
2p
3

3: shear: ~hh3 ¼
p
3

ð7Þ
are obtained. Based on these observations, in addition to the relations (4) the following is required for the

weighting functions
1:
XS

i¼1

wi½h� ¼ 1

2: wi½hj� ¼ dij

3: wi½h� ¼ wi½hþ ~hhi�

ð8Þ
For the stress modes related to the loading scenarios of tension, compression and shear, we set S ¼ 3 and

the requirements (8) are satisfied by the following weighting function
1: tension: w1½h� ¼
1
2
þ 1

2
cos 3h; if � p

6
þ n~hh1 6 h6 p

6
þ n~hh1

0; else

(

2: compression: w2½h� ¼
0; if � p

6
þ n~hh1 6 h6 p

6
þ n~hh1

1
2
þ 1

2
cos 3h; else

(

3: shear: w3½h� ¼
1

2
þ 1

2
cosð3h� pÞ

ð9Þ
and where n ¼ 0; 1; 2; . . . are integer values. A graphical representation of the weighting functions (9) is

given in the middle graph of Fig. 2. For the case, that experimental data are available only for loading in

tension and compression with S ¼ 2, the following weighting functions can be used
1: tension: w1½h� ¼
1

2
þ 1

2
cos 3h

2: compression: w2½h� ¼
1

2
þ 1

2
cosð3h� pÞ

ð10Þ
These functions, which are illustrated at the bottom of Fig. 2, do also satisfy the requirements (8).

Upon using the definition (5.1), alternatively the functional relationships (9) and (10) can be rewritten in
terms of the stress mode factor n as
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1: tension: w1½n� ¼
n2; if nP 0

0; else

(

2: compression: w2½n� ¼
0; if n6 0

n2; else

�
3: shear: w3½n� ¼ 1� n2

ð11Þ
or
1: tension: w1½n� ¼
1

2
ð1þ nÞ

2: compression: w2½n� ¼
1

2
ð1� nÞ

ð12Þ
respectively.
4. A prototype model for stress mode dependent creep

It is the object of this section to present a specific example of the general framework (3) for creep

modeling. The complete set of equations is summarized in Table 1, and some specific comments on the

constitutive equations are discussed next:

4.1. Remarks

1. Concerning notation in Eq. (I) of Table 1, the fourth-order projection tensor IIdev ¼ II � 1=31� 1 is
defined, where II and 1 are fourth-order and second-order unit tensor, respectively.

2. The generality of Eqs. (3) is not fully exploited. This is done in order to reduce the resulting number of

material parameters. In this respect the flow direction d is assumed to be identical for all stress modes;

only a dependency of the flow factor _FFt on the different stress modes is assumed. Furthermore for sim-

plicity merely one isotropic scalar variable R is introduced, which is related to all stress modes.

3. The constants Ai and ni in the damage independent part of Eq. V in Table 1 are material parameters as-

sociated to the ith mode, thus yielding a Norton–Bailey structure for each flow parameter _FFi. This rela-
tion is motivated by a linear ‘‘logðrÞ vs. logð _eeÞ’’ relation in the secondary creep phase, see e.g. Poirier
(1985).

4. Many materials show a deviation from the linear ‘‘logðrÞ vs. logð _eeÞ’’ relation in the secondary creep

phase, and this effect is referred to as power-law-breakdown, see e.g. Poirier (1985, p. 81). Then, very

often it is appropriate to replace the Norton–Bailey ansatz by a Garofalo ansatz as
_FFi ¼ Aiðsinh airvÞni ; i ¼ 1; . . . ; S ð13Þ
and where Ai; ai and ni are material parameters associated to each mode.

5. As mentioned in the introduction, creep is typically accompanied by progressive material deterioration

due to creep damage. A large amount of literature exist on this phenomenon, where also much interest

has been directed to anisotropic damage effects. In our prototype model a simple isotropic damage an-

satz of Kachanow–Rabotnow type is introduced. Note, that the intensity of the damage state dt on the

different modes in Eq. (V) of Table 1 can be influenced by the material parameters pi. In this respect it is

reasonable to set pi P 0 for a tension mode and pi ¼ 0 for a compression mode, where the latter choice

takes into account closure effects.



Table 1

Constitutive relations for stress mode dependent creep

I. Kinematic decomposition

e ¼ eel þ ein

II. Hooke’s law

r ¼ C : eel ¼ 2GIIdev : eel þ B1 : eel1

III. Inelastic strain evolution

1: _eein ¼ _FFtd

2: _FFt ¼
XS

i¼1

wi
_FFi

IV. Flow direction

1: d ¼ 3

2rv
rdev

2: r2
v ¼

3

2
rdev : rdev ¼ 3J2

V. Flow factor associated to each mode

_FFi ¼ Ai
rv � R
r0

� �ni 1

1� dt

� �pi

; i ¼ 1; . . . ; S

VI. Damage evolution

_ddt ¼
XS

i¼1

wi
_ddi

VII. Damage factor associated to each mode

_ddi ¼ Bi
rv

r0

� �mi 1

1� dt

� �qi

; i ¼ 1; . . . ; S

VIII. Isotropic hardening variable

R½ev� ¼ qð1� expð�sevÞÞ

IX. Equivalent inelastic strain

_ee2v ¼
2

3
_eein : _eein ¼ _FF 2

t

X. Material parameters

j ¼ ½Ai; ni; pi;Bi;mi; qi; fi ¼ 1; . . . ; Sg; q; s�T

The weighting functions wi are specified in Eqs. (9) and (10), respectively.
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6. All material constants of the prototype model characterizing the inelastic behavior of the model are sum-

marized in Eq. (X) of Table 1. In addition to the elastic constants, the shear module G and the bulk mod-

ule B, respectively, these have to be calibrated on the basis of experimental data. In order to be physically

meaningful they are restricted to lower and upper bounds ak, bk, respectively. These constraints then de-

fine the feasible domain K, such that
j 2 K � Rnp ; K :¼ fj : ak 6 jk 6 bk; k ¼ 1; . . . ; npg ð14Þ
where np ¼ dim½j� denotes the number of material parameters for our specific model. We also remark,

that the constant r0 in Eqs. (V) and (VII) of Table 1 has the interpretation of a normalization variable,
and thus is not regarded as an independent material parameter.
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5. Numerical implementation

This section is concerned with numerical integration of the rate-equations for ein and dt in Table 1.

Following standard integration procedures in finite element techniques a strain-driven algorithm is con-
sidered, where the total strain tensor nþ1e and initial values nein, ndt at each time step nþ1t are given. Then it is

the object to find the corresponding quantities nþ1ein, nþ1dt at time nþ1t consistent with the constitutive

equations of the previous sections. In order to alleviate the notation, the index nþ 1, referring to the actual

time step, will be omitted subsequently.

5.1. Integration scheme

For numerical integration of the rate-equations for ein and dt summarized in Table 1 an Euler backward

rule renders the following update scheme:
1: ein ¼ nein þ Dein

2: dt ¼ ndt þ Ddt
ð15Þ
Here the increments on the r.h.s in the above equations are obtained from
1: Dein ¼ DFtd

2: DFt ¼
XS

i¼1

DFiwi

3: DFi ¼ DtAi
rv � R
r0

� �ni 1

1� dt

� �pi

4: wi ¼ wi½n� ðsee Eqs: ð11Þ and ð12ÞÞ

5: r2
v ¼

3

2
rdev : rdev ¼ 3J2

6: d ¼ 3

2rv
rdev

7: R ¼ qð1� expð�sevÞÞ
8: ev ¼ nev þ De

9: De ¼ DFt

10: Ddt ¼
XS

i¼1

Ddiwi

11: Ddi ¼ DtBi
rv

r0

� �mi 1

1� dt

� �qi

ð16Þ
and where Dt ¼ nþ1t � nt denotes the time increment. Upon combining Eqs. (15.1), (16.1) and (16.6) with

Eqs. (I) and (II) of Table 1 the deviatoric part of the stress tensor is obtained from the relations
1: rdev ¼ rtr
dev �

3GDFt
rv

rdev; where

2: rtr
dev ¼ 2Gðedev � neinÞ

ð17Þ
and where rtr
dev is typically referred to as the trial stress tensor, see e.g. Simo and Hughes (1998) and ref-

erences therein. The above representation (17.1) shows, that rdev and rtr
dev are coaxial, and this induces the

relation
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rdev

rv
¼ rtr

dev

rtr
v

) rdev ¼
rv

rtr
v

rtr
dev ð18a;bÞ
where analogously to Eq. (16.5) ðrtr
v Þ

2 ¼ 3=2rtr
dev : r

tr
dev has been defined.

Upon inserting the relation (18b) into Eq. (5.2), the stress mode factor n can be expressed explicitly in

terms of the trial stress tensor as
1: n ¼
ffiffiffiffiffi
27

p

2

J tr
3

ðJ tr
2 Þ

3=2
; where

2: J tr
i ¼ 1

i
1 : ðrtr

devÞ
i
; i ¼ 2; 3

ð19Þ
However, further quantities such as DFt or Ddt have to be obtained iteratively. An inspection of the relations

(16)–(19) reveals, that with knowledge of the quantities rv and dt, which are determined in a local iteration
described below, all remaining scalar and tensor quantities can directly be calculated.

5.2. Local iteration

The unknowns x ¼ ½rv; dt�T appearing in Eqs. (16)–(19) are obtained from a nonlinear system of equa-

tions with dimension 2 as follows: Upon combining Eqs. (17.1) and (18b) we conclude that the unknown rv

has to satisfy rv ¼ rtr
v � 3GDFt. From this relation and the discretized damage update rule (15.2) the fol-

lowing nonlinear problem is derived:
1: r ¼ ½r1; r2�T ¼ 0; where

2: r1 ¼ rv � rtr
v þ 3GDFt

3: r2 ¼ Ddt þ ndt � dt

ð20Þ
This problem can be solved iteratively with a Newton method
xðkþ1Þ ¼ xðkÞ � ðJ ðkÞÞ�1rðkÞ; where J ðkÞ ¼ or
ox

����
xðkÞ

; k ¼ 0; 1; 2; . . . : ð21a;bÞ
Alternative procedures for solution of local problems like (20) are given in Johansson et al. (1999) and

furthermore in Mahnken (2000). The expressions for the elements of the Jacobian J can be extracted from

the general variation dr summarized in Appendix A, and therefore we will not elaborate on more details at

this stage.

Having solved the above local problem (20), the relations (15) are used for update of the history vari-

ables, and finally the deviatoric stresses are obtained from Eq. (18b).

5.3. Algorithmic tangent modulus

The algorithmic tangent modulus necessary for applying a Newton method for iterative solution of the
global equilibrium problem requires the derivative of the stress tensor r with respect to the total strain

tensor e, i.e. CT ¼ dr=de, see e.g. Simo and Hughes (1998) and references therein. Upon exploiting the

variations in Appendix A straightforward differentiation renders the following result
CT ¼ 2Grv

rtr
v

IIdev þ 3Grv

ðrtr
v Þ

3
rtr
dev � rtr

dev þ
1

rtr
v

rtr
dev �

drv

de
þ B1� 1 ð22Þ
The quantity drv=de is part of the quantities dx=de ¼ ½drv=de; ddt=de�, which in turn are obtained as

follows: we consider the local problem (20) as an implicit function and conclude
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r½e; x½e�� ¼ 0 ! dr
de

¼ or
oe

þ or
ox

dx
de

¼ 0 ! dx
de

¼ �J�1 or
oe

ð23a;b;cÞ
where J is the Jacobian defined in Eq. (21b). The expressions for or=oe can be extracted from the general

expression for the variation dr summarized in Appendix A, and therefore we will not elaborate on more

details at this stage.

We close this section with the remark, that the local iteration procedure of the previous subsection and

the algorithmic tangent modulus of this subsection has been implemented into the UMAT subroutine of

the finite element program (ABAQUS-Version 6.3, 2002).

5.4. Some aspects on the sensitivity analysis for parameter identification

For parameter identification based on experimental testing a least-squares functional is considered as an
identification criterion in order to minimize the distance of the simulated data to the experimental data. A

general framework and technical details on application of a gradient based strategy for minimization of the

least-squares functional is presented elsewhere, see Mahnken et al. (1998), and shall not be repeated here.

For an analytical determination of the gradient a main objective becomes the determination of dnþ1r½j�=dj.
At a further stage of the sensitivity analysis it is required to determine dx½j�=dj. Following Mahnken et al.

(1998), in the context of a time stepping, strain-controlled integration scheme the unknown vector x is the

result of the local problem (20) thus satisfying the condition r ¼ r½j; x; ndt; ne; edev� ¼ 0. Consequently the

relations
1:
dx
dj

¼ �J�1
�oor
�ooj

; where

2:
�oor
�ooj

¼ or
oj

þ or
ondt

ondt
dj

þ or
onein

dnein

dj
þ or
oedev

dedev

dj

ð24Þ
can be derived, and where as before J is the Jacobian defined in Eq. (21b). Please observe the analogous

structure of the relations (23c) and (24.1). The expressions for the quantities or=oj, or=ondt, or=onein,
or=oedev can be extracted from the general variation dr summarized in Appendix A, and therefore we will

not elaborate on more details at this stage. Furthermore, we remark, that the quantities dndt=dj, d
nein=dj,

which give the result (24) a recursion structure, are obtained in a so-called post-precessing step, and it
is noteworthy, that for the case of strain controlled experiments the quantity dedev=dj is zero. For the case

of stress-controlled problems we also refer to the approach described in Mahnken et al. (1998).
6. Representative examples

6.1. Primary and secondary creep for aluminum alloy AK4-1T

In this section the primary and secondary creep phases for an aluminum alloy AK4-1T at a temperature

of 473 K are simulated. The experimental data for this material were taken from Betten et al. (1998) and are

shown in Fig. 3 under uniaxial tension, uniaxial compression and pure torsion, respectively. As noted in

Betten et al. (1998) the equivalent inelastic strain is largest under pure torsion and smallest under uniaxial

compression.

The simulation is done with the constitutive equations of Table 1, where S ¼ 3 has been chosen for the

number of modes, thus referring to the three types of experiments in tension, compression and shear, re-

spectively. Note, that those parts of the model activating isotropic damage are not taken into account in
this example. The results of the simulation are depicted in Fig. 3. A comparison with the experimental data
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Fig. 3. Primary and secondary creep for AK4-1T: Comparison of simulation and experiment at 473 K under (top) tension, (middle)

compression, and (bottom) torsion at various stress states. Symbols and lines refer to experimental and simulated data, respectively.
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demonstrates the capability of the proposed model to simulate the different characteristic behaviors for all

three stress modes.

Some remarks should be made concerning the strategy for obtaining the material parameters: These have

been determined in a consecutive manner, where firstly only the data for the tension test were used, such

that only the parameters A1, n1, q, s were allowed to vary. The optimization procedure started with some

trial and error steps in order to overcome the local minima, followed by the gradient based strategy outlined

in Section 5.4. In a second phase the compression data were added in order to vary the parameters A2, n2, q,
s in the optimization process, and lastly the torsion data were taken into account to find solutions for A3, n3,
q, s. In a fourth phase all parameters were allowed to vary thus giving the final solutions summarized in

Table 2. From Table 2 it becomes apparent, that all three stress modes require individual sets of Norton

parameters (Ai; ni), i ¼ 1; 2; 3 thus reflecting the asymmetric effects of the material.



Table 2

Primary and secondary creep for AK4-1T: Material parameters for tension, compression and torsion modes

B [GPa] G [GPa] r0 [MPa] q [MPa] s [–]
83.3 25.75 5.15 40.31 70.0

A1 [–] n1 [–] A2 [–] n2 [–] A3 [–] n3 [–]

0.696 8.38 0.368 8.35 0.171 6.7
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6.2. Primary, secondary and tertiary creep for superalloy Ren�ee 95

This section intends to simulate experimental results for a superalloy Ren�ee 95 at a temperature of 649 �C.
The data for this material were taken from Stouffer and Dame (1996, p. 116) for a tension test and

a compression test as shown in Fig. 4. Note, that the tension data exhibit a tertiary part, which is not

observed in the compression test.
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tension and compression at various stress states; (bottom) damage evolution for the tension tests. Symbols and lines refer to exper-

imental and simulated data, respectively.



Table 3

Primary, secondary and tertiary creep for Ren�ee 95: Material parameters corresponding to tension and compression modes

B [GPa] G [GPa] r0 [GPa] q [MPa] s [–]
128.2 54.12 10.83 974.1 1158.2

A1 [–] n1 [–] A2 [–] n2 [–] p1 [–] p2 [–]

0.248 3.67 3.02d–3 2.5 3.5 0.0

B1 [–] m1 [–] B2 [–] m2 [–] q1 [–] q2 [–]

3.6 1.0 0.0 – 1.0 –

6202 R. Mahnken / International Journal of Solids and Structures 40 (2003) 6189–6209
The simulation is performed with the constitutive equations of Table 1, where S ¼ 2 has been chosen for
the number of modes, thus referring to the two types of experiments in tension and compression, respec-

tively. Note, that the damage part is activated only for the tension mode. The comparison of the simulation

in Fig. 4 with the experimental data illustrates, as in the previous example, the capability of the proposed

model to simulate the different characteristic behaviors for both stress modes with a very satisfying

agreement. In the second graph of Fig. 4 additionally the damage evolution is depicted.

The final results of the optimization process for all material parameters of Table 1 are summarized in

Table 3. Analogously to the first example these were obtained in a consecutive manner, were firstly the

compression data were used to obtain parameters for A2, n2, q, s. In a second phase the tension data were
added thus obtaining estimates for A1, n1, q, s, B1, m1, p1. In a third phase all parameters were allowed to

vary thus giving the final solutions summarized in Table 3. As in the previous example it becomes apparent,

that both stress modes require an individual set of Norton parameters ðAi; niÞ, i ¼ 1; 2 thus reflecting also

here the asymmetric nature of the material.
6.3. Asymmetric relaxation effects in a square plate with circular hole

In this section the relaxation behavior of a square plate with circular hole shown in Fig. 5 is simulated

with the finite element method. Due to obvious symmetry conditions only a quarter of the specimen is
2

10 mm

10
 m

m

r = 0.5 mm 

1

d
d

Fig. 5. Square plate with circular hole: Geometry, finite element discretization and loading.
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considered in the plain strain calculation. The loading is displacement controlled, where the upper and

lower sides of the specimen are moved outwards, whereas the left and the right sides are moved inwards.

The values for the prescribed displacements are d1 ¼ 0:015 mm and the relaxation time is 1000 min. The

same material as in the previous section is assumed, i.e. a superalloy Ren�ee 95 at a temperature of 649 �C
with material parameters of Table 3.

In the left upper plot of Fig. 6 the von Mises stress is depicted. This quantity is purely symmetric with

respect to a 90� rotation of the plate, thus illustrating its incapability to detect asymmetric effects. In the top

right plot of Fig. 6 the stress mode variable n is depicted at the beginning of loading (t ¼ 0:1 min), thus

illustrating the activation of tensile and compression regions. Along the rim of the hole, the model detects

compression regimes at the upper and lower part of the hole, whereas at the right and left part tension

regimes occur. The left bottom plot of Fig. 6 shows the equivalent inelastic strain ev. Here, due to the

comparatively small activation of damage the effect of asymmetry is almost negligible. In the right bottom
plot of Fig. 6 the damage variable dt is shown. Much larger values are adopted in the tension regimes

compared to the compression regimes, thus illustrating the asymmetric effect.

Fig. 7 depicts the variation of von Mises stress rv and the damage variable dt with respect to time. It

becomes apparent that the former exhibits only small variations along the rim of the hole during the whole

relaxation process. However, due to the different regimes of tension and compression the resulting damage
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Fig. 6. Square plate with circular hole: (top left) von Mises stress rv and (top right) stress mode variable n at beginning of loading;

(bottom left) equivalent plastic strain ev and (bottom right) damage variable dt at end of loading (t ¼ 1000 min).
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variable becomes much larger at the right (and left) point of the hole compared to the upper (and lower)
point of the hole during the relaxation process.
6.4. Gasturbine blade subjected to temperature and centrifugal loads

In this section a gasturbine blade with finite element discretization shown in Fig. 8 is investigated. This

type of blade has been used formerly in gasturbine machines of ABB (now ALSTOM). The simulation is

performed with the commercial program (ABAQUS-Version 6.3, 2002), where the constitutive equations of

Table 1 have been implemented into the UMAT subroutine. Due to confidential agreement absolute values
for the finite element results of temperature, stress, stress mode factor and damage factor are not given in

the following result plots.

The component is subjected to thermal loading with temperature distribution in the left plot of Fig. 9

and centrifugal loading arising from rotation with 50 Hz. As in the previous section the superalloy Ren�ee 95
is considered as the material. In order to take into account a (fictitious) temperature dependence, the factors

of evolution for damage and equivalent plastic strain of Table 1 are multiplied with a (fictitious) factor
b ¼ exp
T � T0
aT

� �
ð25Þ



Fig. 9. Gasturbine blade: (Left) temperature distribution, dark areas in the pressure region correspond to hot areas. (Right) von Mises

equivalent stress at beginning of loading, dark areas near the fillet region correspond to high stresses.

Fig. 8. Gasturbine blade: finite element discretization.
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Fig. 10. Gasturbine blade: (Left) stress state variable n at beginning of loading, dark areas on the pressure side correspond to tension

mode. (Right) damage variable dt at end of loading (t ¼ 30000 h), dark areas near the fillet region correspond to damaged areas.
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Here T is the material temperature, T0 ¼ 649 �C is the temperature for the material parameters of Table 3

and a ¼ 0:1 has been chosen. Tetrahedral elements have been used in the finite element discretization such

that the number of nodes is 184 248, the number of elements is 107 959 and the degrees of freedom is

552 744.
The right plot of Fig. 9 shows the von Mises equivalent stress at the beginning of loading after t ¼ 15

min. The corresponding stress state variable n is depicted in the left plot of Fig. 10. It can be seen, that the

combination of centrifugal and thermal loading results into the different tensile and compression regions.

Naturally the tensile regions dominate, which is due to the centrifugal loading. The resulting damage

variable dt is shown in the right plot of Fig. 10. It becomes apparent that larger values are adopted in

tension regimes with highest temperatures on the pressure side and near the fillet region with higher von

Mises stresses.
7. Summary and conclusions

In this contribution a constitutive framework has been presented, which enables to simulate the creep

deformation with characteristic behavior dependent on the loading state. The key idea here is an additive

decomposition of the inelastic strain rate, where each of the quantities is weighted with a scalar valued

function, which is dependent on the so-called stress mode angle. A main advantage of the concept is, that

the stress modes can directly be associated to certain characteristic loading scenarios, such as tension,

compression and shear, which are experimentally investigated in the laboratory.

In a further part of the paper the numerical implementation of the model equations is described, in-

cluding the derivation of the algorithmic tangent operator for the equilibrium iteration and the sensitivity
terms for parameter identification, each of them consistent with the underlying integration algorithm. The
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integration algorithm and the algorithmic tangent operator have been implemented into the UMAT sub-

routine of the commercial finite element program (ABAQUS-Version 6.3, 2002).

Overall, the examples highlight the capability of the model to simulate asymmetric creep effects for two

different materials, an aluminum alloy AK4 and a superalloy Ren�ee 95. The latter material was also used to
investigate the relaxation behavior of a square plate with circular hole and the evolution of creep damage in

a large scale gasturbine blade.

The proposed approach is regarded as very general in order to simulate asymmetric effects for creep.

Future work should take into account hydrostatic stress states, kinematic hardening and multiaxial stress

states. Furthermore the aspects of damage induced anisotropy and finite strains will constitute an area of

future research work.
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Appendix A. Variations of significant quantities

In the sequel variations of significant quantities necessary for evaluation of the Jacobian (21b), the
quantities or=oe appearing on the r.h.s. in Eq. (23c) necessary for determination of the alogrithmic tangent

modulus and the quantities �oor=oj appearing in Eq. (24), necessary for the sensitivity analysis are derived. In

order to alleviate the derivations, the symbolic algebra program MuPAD (Gerhard et al., 2000) has been

used on a LINUX platform. For completeness we remark that variations w.r.t. to the elastic constants G
and B and to the scaling factor r0 are not taken into account.

Variation of rtr
dev ¼ 2Gðedev � neinÞ
drtr
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Variations of w1½n�, w2½n�, w3½n� (see Eq. (11))
1: dw1½n� ¼
2ndn; if nP 0

0; else

�

2: dw2½n� ¼
0; if n6 0

2ndn; else

�
3: dw3½n� ¼ �2ndn

ðA:6Þ
Variation of R ¼ qð1� expð�sevÞÞ

dR ¼ dqð1� expð�sevÞÞ þ q expð�sevÞðdsev þ sdevÞ ðA:7Þ
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