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Abstract

The paper presents a framework for creep modeling of materials exhibiting different behaviors in different loading
scenarios, such as tension, compression and shear, respectively. To this end an additive decomposition of the flow rule is
assumed into a sum of weighted stress mode related quantities. The characterization of the stress modes is obtained in
the octahedral plane of the deviatoric stress space in terms of a single scalar variable, such that stress mode dependent
scalar weighting functions can be constructed. Furthermore the numerical implementation into a finite element program
of the resulting set of constitutive equations and aspects of the sensitivity analysis for parameter identification are
addressed. Verification of the constitutive equations is succeeded for an aluminum alloy AK4-1T and a superalloy René
95, respectively. In two finite element examples the proposed model is applied to investigate the relaxation behavior of a
square plate with circular hole and the evolution of creep damage in a gasturbine blade subjected to centrifugal and
thermal loads.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Creep is a phenomenon of progressive deformation of solid materials subjected to constant stress at
elevated temperatures. Dependent on the amount of stress and temperature the creep mechanisms within
the microstructure for metallic materials can be grouped into dislocation glide, dislocation creep, diffusion
creep and grain boundary sliding, see e.g. Ashby and Jones (1996, p. 187 f), Dieter (1988, p. 445 ff), Riedel
(1987, p. 3 ff). Typically the resulting experimental effects exhibit the three stages of primary, secondary and
tertiary creep. The model development for the design of engineering structures then very often is based on
one type of experiment, where e.g. a tension test is a favorite type for metals.

However, extended experimental tests for many metallic materials exhibit different creep behaviors for
different loading types such as tension, compression and shear. For example test results for a superalloy
René 95 in Stouffer and Dame (1996, p. 116), show, that for merely the same magnitudes of stress in tension
and compression the magnitudes of creep rates in tension are much greater than the corresponding rates in
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Fig. 1. Metallographic causes of asymmetry: (a) Influence of diffusion: tensile stresses expand the lattice and reduce the resistance to
diffusion, whereas compressive stresses reduce the lattice dimensions and increase the resistance to diffusion. (b) Influence of micro-
cracks: cracks that are closed have only a small influence on the creep behavior under uniaxial compression, whereas in uniaxial tension
the creep rate in general is much greater.

compression. As illustrated in Fig. 1 two metallographical explanations can be summarized as the main
sources of this effect.

To explain the first source we recall that diffusion is the dominate deformation mechanism of creep.
Then, tensile stresses expand the lattice and reduce the resistance to diffusion, whereas compressive stresses
reduce the lattice dimensions and increase the resistance for diffusion. The second source is due to the
progressive material deterioration of creep damage, where dependent on the amount of stress and tem-
perature, the microdefects can be grouped into microcracks, voids and pores. The resulting macrome-
chanical mechanisms, even if isotropic, may be different for different stress modes. For example,
microcracks that are closed have only a small influence on the creep behavior under uniaxial compression,
whereas in uniaxial tension the creep rate in general is much greater. It is also noteworthy that in addition
to the above mentioned characteristics in tension and compression a pure shear test may show a further
independent response.

The above phenomena are, from a more general point of view, examples of so-called asymmetric effects or
as denoted by Altenbach et al. (1995) non-classical effects. These are defined by the observation, that a certain
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type of experiment, such as a tension test, is not sufficient in order to characterize the material for different
loading scenarios. Instead, additional independent types of experiments, such as compression, shear and
hydrostatic tests, are necessary in order to get a more comprehensive (though in general still not complete)
characterization of the material. It should be emphasized, that the asymmetric effects examined in this paper
are restricted to isotropic materials, and therefore carefully have to be distinguished from the effects of initial
(material) anisotropy and induced anisotropy (such as a Bauschinger effect or damaged induced anisotropy).

Several publications can be found in the literature for simulation of inelastic material behavior with
asymmetric effects. Many of these approaches are based on a stress potential dependent on the stress tensor
and further state variables, which describe e.g. the state of hardening, softening or damage, respectively.
Typically, dependent on the symmetry of the considered material (e.g. isotropy, cubic, transversal sym-
metry) polynomial invariants of the stress tensor are incorporated into the potential. Along this line
constitutive equations within the field of plasticity have been formulated e.g. in Spitzig et al. (1975),
Altenbach (2001), Altenbach et al. (1995), Mahnken (2001), Zolochevskii (1989) amongst others. Ap-
proaches for asymmetric effects in creep are suggested in Altenbach et al. (1995), Betten et al. (1998),
Voyiadjis and Zolochevsky (1998), Voyiadjis and Zolochevsky (2000), Zolochevsky (1991) amongst others.

It appears from the above mentioned references that so far no common approach exists concerning the
best strategy for taking account individual loading scenarios in the constitutive equations. A general
agreement is the incorporation of odd power terms for odd invariants of stresses, see e.g. Spitzig et al.
(1975), Betten et al. (1999). Furthermore, a scalar variable, which is expressed in terms of the ratio of the
second and third basic invariant of the deviatoric stress tensor, can be used as an indicator for detection of
differences in the loading modes. This quantity, which will be called stress mode angle in this work, has been
applied e.g. in Zolochevskii (1990), Altenbach (2001), Ehlers (1995), Mahnken (2001).

This work makes extensive use of the stress mode angle for creep modeling with asymmetric effects. The
key idea consists in an additive decomposition of the inelastic strain rate, where each of the related
quantities incorporates a weighting function dependent on the stress mode angle. The advantage of this
approach is, that certain (though not all) material parameters, such as Norton-type constants, can be
obtained individually from specific loading modes such as tension, compression and shear, investigated
experimentally in the laboratory.

A further part of the paper is devoted to the numerical implementation of the constitutive relations,
which, regarding asymmetric inelastic effects, seems to have attracted little attention in the literature so far.
In particular the derivation of the algorithmic tangent operator for the equilibrium iteration and the
sensitivity terms for parameter identification, each of them consistent with the underlying integration
algorithm, are derived. The proposed integration algorithm and the algorithmic tangent operator have been
implemented into a general finite element program such as the UMAT subroutine of the commercial
program (ABAQUS-Version 6.3, 2002).

The structure of the paper is as follows: Section 2 presents a general framework for stress mode dependent
creep. In Section 3 stress mode related weighting functions are introduced, which are incorporated into a
prototype model of Section 4. Aspects of the numerical implementation into general finite element programs
and into gradient-based optimization programs for parameter identification are outlined in Section 5. In
Section 6 four examples exhibiting asymmetric effects are presented: in the first two examples verification of
the constitutive equations is succeeded for an aluminum alloy AK4-1T and a superalloy René 95, respec-
tively. Furthermore, in two finite element examples the proposed model is applied to investigate the relax-
ation behavior of a square plate with circular hole and the evolution of creep damage in a gasturbine blade.

1.1. Notations

Square brackets [e] are used throughout the paper to denote ‘function of” in order to distinguish from
mathematical groupings with parenthesis (e).
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2. A general framework for stress mode dependent creep

In the remainder of this work the standard additive decomposition of the second-order total strain
tensor ¢ is assumed, i.e.

e=¢l +g" (1)
Here, as usual the elastic strain tensor & is related to the stress tensor ¢ by Hooke’s law
6=C:¢ (2)

where C is the fourth-order elasticity tensor. The second-order inelastic strain tensor &" is obtained from
evolution equations for the strain rate tensor ", where (.) represents the time derivative. Many publications
have been devoted to the issue of formulating appropriate evolution equations. An extensive overview on
different concepts, such as the creep potential theory and the tensor function theory, has recently been
published by Betten (2001).

In the following exposition a stress mode related approach according to the following structure is

proposed:

S
1. & = Z w:Fd;, where

i=1
21:;:17:[0',(],7“}
3. d[:d[[d,q,...;’f]
4. q={lo,q,...;K|

5. w; = wi[o]

Eq. (3.1) represents the additive decomposition of the inelastic strain rate tensor into S stress mode related
quantities. Each of them incorporates a scalar flow factor F, and a tensorial flow direction d;, both dependent
on the stress tensor o, a set of structural (internal) variables q and also a vector of material parameters .
Furthermore, in the above skeleton structure (3) a weighting function w; is associated to each mode i, which
is dependent on the stress tensor @, and for which it is stipulated that

1. Zw,-[a} =1 )
2. wi[a/} = 5,‘/

Here the stress tensors a;, i = 1,2,..., S refer to independent characteristic stress modes, which for example
can be investigated experimentally in tension, compression and shear, respectively. Furthermore we remark,
that Eq. (4.1) can be regarded as a completeness condition, whereas Eq. (4.2) constitutes a normalization
condition for the weighting functions.

The above Egs. (3) are regarded as very general, thus including also anisotropic material behavior. In
particular these can be viewed as an extension of the framework based on elastic projection operators, see
e.g. Mahnken (2002) and references therein. However, in the sequel of this work we restrict ourselves to
isotropic materials, and the aspect of anisotropy combined to stress mode dependent material behavior
shall be regarded at a later stage.
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3. Stress mode related weighting functions

In the remainder of this work, we will concentrate on the three independent stress modes for tension,
compression and shear with applications to isotropic materials. Following the same procedure as exten-
sively outlined by Ehlers (1995), these modes can be represented in the octahedral plane of the associated
deviatoric stress tensor. To this end the quantities

l.60= ! arccos[¢],  where

V27T
2.¢{= T (J2)3/2 (5)

3. J,v:%I toh,, =23
are defined. Here 0 shall be referred to as the stress mode angle dependent on the stress mode factor E.
Furthermore in the above Eq. (5.3) J, and J; denote the second and third basic invariant of the deviatoric
stress tensor 64y, respectively, and the second-order unity tensor 1 has been introduced.
A graphical interpretation of the stress mode angle 0 is given at the top of Fig. 2. In particular it becomes
apparent, that the independent stress modes of tension, compression and shear are characterized by the

stress mode angles
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Fig. 2. Top: Octahedral plane in the deviatoric stress space. Here ¢/, ¢}, o} denote the principal deviatoric stresses. Circles, squares and
triangles represent stress modes of tension, compression, and shear, respectively. Middle: Weighting functions (9) in terms of the stress
mode angle 0 for tension, compression and shear mode. Bottom: Weighting functions (10) in terms of the stress mode angle 0 for

tension and compression.
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2
1. tension: 01:?7{;1, n=0,1,2,...
. 2
2. compression: 02:?7{114—%, n=20,1,2,... (6)
3. shear: 03:gn+g n=0,1,2,...

and for each of the stress modes the following periodicity angles

~ 2
1. tension: 0, = il
3
2. compression: 6, = 2?71 (7)
PO
3. shear: 0; = 3

are obtained. Based on these observations, in addition to the relations (4) the following is required for the
weighting functions

S

LY w0 =1
i=1

2. Wi[gj] == 5,‘]'

3. wil0] = wi[0 + 6]

For the stress modes related to the loading scenarios of tension, compression and shear, we set S = 3 and
the requirements (8) are satisfied by the following weighting function

I4lcos30, if —Z4+n0, <O<Z+nd

1. tension: wi[0] = 1%z 6 TN 6 TN
0, else
0, it —24 00, <0< =4+ n0

2. compression:  w,[0] = 6 ! 6 : 9)
1+1cos30, else

11
3. shear: wsl0] = ) cos(30 — )
and where n =0,1,2,... are integer values. A graphical representation of the weighting functions (9) is

given in the middle graph of Fig. 2. For the case, that experimental data are available only for loading in
tension and compression with S = 2, the following weighting functions can be used

1. tension: wi[0] = =+ = cos 30

R = O —
| = O —
—

-
=)

N~—

2. compression:  w»[0] = =+ = cos(30 — n)

These functions, which are illustrated at the bottom of Fig. 2, do also satisfy the requirements (8).
Upon using the definition (5.1), alternatively the functional relationships (9) and (10) can be rewritten in
terms of the stress mode factor & as
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2 ifes
1. tension: wi[é] = ¢, if =0
0, else
: 0, if £€<0 an
2. compression:  w,[¢] = )
&, else
3. shear: wi[f] =1 &
or
: 1
1. tension: wi[é] = 5(1 1)
i 1 (12)
2. compression:  wy[¢] = E(1 -
respectively.

4. A prototype model for stress mode dependent creep

It is the object of this section to present a specific example of the general framework (3) for creep
modeling. The complete set of equations is summarized in Table 1, and some specific comments on the

constitutive equations are discussed next:

4.1. Remarks

1.

2.

Concerning notation in Eq. (I) of Table 1, the fourth-order projection tensor //%" =1 —1/31®1 is
defined, where II and 1 are fourth-order and second-order unit tensor, respectively.

The generality of Egs. (3) is not fully exploited. This is done in order to reduce the resulting number of
material parameters. In this respect the flow direction d is assumed to be identical for all stress modes;
only a dependency of the flow factor ¥, on the different stress modes is assumed. Furthermore for sim-
plicity merely one isotropic scalar variable R is introduced, which is related to a// stress modes.

. The constants 4; and »; in the damage independent part of Eq. V in Table 1 are material parameters as-

sociated to the ith mode, thus yielding a Norton—Bailey structure for each flow parameter F. This rela-
tion is motivated by a linear “log(a) vs. log(é)” relation in the secondary creep phase, see e.g. Poirier
(1985).

. Many materials show a deviation from the linear “log(s) vs. log(é)” relation in the secondary creep

phase, and this effect is referred to as power-law-breakdown, see e.g. Poirier (1985, p. 81). Then, very
often it is appropriate to replace the Norton—Bailey ansatz by a Garofalo ansatz as
F, = A;(sinhwy0,)", i=1,....8 (13)

and where 4;, o, and n; are material parameters associated to each mode.

. As mentioned in the introduction, creep is typically accompanied by progressive material deterioration

due to creep damage. A large amount of literature exist on this phenomenon, where also much interest
has been directed to anisotropic damage effects. In our prototype model a simple isotropic damage an-
satz of Kachanow—Rabotnow type is introduced. Note, that the intensity of the damage state d, on the
different modes in Eq. (V) of Table 1 can be influenced by the material parameters p;. In this respect it is
reasonable to set p; = 0 for a tension mode and p; = 0 for a compression mode, where the latter choice
takes into account closure effects.
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Table 1
Constitutive relations for stress mode dependent creep

L. Kinematic decomposition

e— ¢l 1 gn

II. Hooke’s law

6=C:e&! =2GI" : ¢ + B1: &1
111 Inelastic strain evolution

1. & =Fd
. ) .
2F=) wh
i=1

1V. Flow direction

3
1.d= 2O'L, Odey
2. 65 = io'dev 1 O0dev = 3JZ

V. Flow factor associated to each mode

. g, — R\" 1 b
F =4, — , i=1,...,8
' ( 00 ) (1*dr> !

VI. Damage evolution

dt = XS: Wr'di
i=1

VII. Damage factor associated to each mode

. O', mj l qi
d=8(2) (—— ), i=1,...,8
(%) ()

VIII. Isotropic hardening variable
RleJ = g(1 — exp(—se.)
IX. Equivalent inelastic strain

2

52 Zain L gin _ f2
e, =38 & =F,

X. Material parameters

k= [Ai,n,pi, Biymiygi {i=1,...,5},q,s]"

The weighting functions w; are specified in Egs. (9) and (10), respectively.

6. All material constants of the prototype model characterizing the inelastic behavior of the model are sum-
marized in Eq. (X) of Table 1. In addition to the elastic constants, the shear module G and the bulk mod-
ule B, respectively, these have to be calibrated on the basis of experimental data. In order to be physically
meaningful they are restricted to lower and upper bounds a;, b;, respectively. These constraints then de-
fine the feasible domain ", such that

ke CRY, A ={k:ar<wip<bi,k=1,...,n,} (14)

where 7, = dim[k] denotes the number of material parameters for our specific model. We also remark,
that the constant g, in Egs. (V) and (VII) of Table 1 has the interpretation of a normalization variable,
and thus is not regarded as an independent material parameter.
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5. Numerical implementation

This section is concerned with numerical integration of the rate-equations for &" and d, in Table I.
Following standard integration procedures in finite element techniques a strain-driven algorithm is con-
sidered, where the total strain tensor "*'¢ and initial values "™, "d, at each time step "*!¢ are given. Then it is
the object to find the corresponding quantities "*'¢™, "*1d, at time "*'t consistent with the constitutive
equations of the previous sections. In order to alleviate the notation, the index n + 1, referring to the actual
time step, will be omitted subsequently.

5.1. Integration scheme

For numerical integration of the rate-equations for ¢" and d, summarized in Table 1 an Euler backward
rule renders the following update scheme:

1. ain — nain +A8in

(15)
2.d, ="d, + Ad,
Here the increments on the r.h.s in the above equations are obtained from
1. A" = AFd
S
2. AF =) AFw,
=1
. —R nj l Di
3. AF; = At4;| =
(%7) (=)
4. w; = w;[¢] (see Egs. (11) and (12))
5. Gg = %adev L Odey — 3.]2
3
6.d =5 0ges (16)
20,

7. R =q(1 —exp(—se,))
8. e,="e,+ Ae
9. Ae = AF,

S
10. Ad, = ZAa’,w,-
i=1

o, mj 1 qi
11. Ad; = AtB;[ —
=a(2) (=a)

and where At ="t — "t denotes the time increment. Upon combining Eqgs. (15.1), (16.1) and (16.6) with
Egs. (I) and (II) of Table 1 the deviatoric part of the stress tensor is obtained from the relations

1 _ w 3GAF,
. Ogey = 04, — ——0Odey, Where
(17)

= 2G(8gey — "€")

tr
2. 64,

and where 6%,

erences therein. The above representation (17.1) shows, that 64, and &
relation

is typically referred to as the trial stress tensor, see e.g. Simo and Hughes (1998) and ref-

&, are coaxial, and this induces the



6198 R. Mahnken | International Journal of Solids and Structures 40 (2003) 6189-6209

tr

Oiey O o,

— = —df" = Ogey = — 0 (18a,b)
Oy ol g,

where analogously to Eq. (16.5) (a¥)* = 3/26%,, : 64, has been defined.
Upon inserting the relation (18b) into Eq. (5.2), the stress mode factor & can be expressed explicitly in
terms of the trial stress tensor as

V2T UE

1. {=————, where
2 )" (19)

r 1 ro\i .
2.J} :?1 ((af,), i=2,3
However, further quantities such as AF; or Ad; have to be obtained iteratively. An inspection of the relations
(16)—(19) reveals, that with knowledge of the quantities ¢, and d,, which are determined in a local iteration
described below, all remaining scalar and tensor quantities can directly be calculated.

5.2. Local iteration

The unknowns x = [amdt]T appearing in Egs. (16)-(19) are obtained from a nonlinear system of equa-
tions with dimension 2 as follows: Upon combining Eqgs. (17.1) and (18b) we conclude that the unknown o,
has to satisfy o, = o' — 3GAF,. From this relation and the discretized damage update rule (15.2) the fol-
lowing nonlinear problem is derived:

l.r= [7‘177'2]T =0, where
2.1 =0,— 0" +3GAF, (20)
3.1 =Ad, +"d, —d,

This problem can be solved iteratively with a Newton method

A = 5B (JO) 0 here  J® — o

T k=012,.... 21a,b
- ox | ) ( )

Alternative procedures for solution of local problems like (20) are given in Johansson et al. (1999) and
furthermore in Mahnken (2000). The expressions for the elements of the Jacobian J can be extracted from
the general variation ér summarized in Appendix A, and therefore we will not elaborate on more details at
this stage.

Having solved the above local problem (20), the relations (15) are used for update of the history vari-
ables, and finally the deviatoric stresses are obtained from Eq. (18b).

5.3. Algorithmic tangent modulus

The algorithmic tangent modulus necessary for applying a Newton method for iterative solution of the
global equilibrium problem requires the derivative of the stress tensor ¢ with respect to the total strain
tensor &, i.e. Ct = da/ds, see e.g. Simo and Hughes (1998) and references therein. Upon exploiting the
variations in Appendix A straightforward differentiation renders the following result

2Go, 4oy . 3GO,
= 11
o (o)’
The quantity dg,/de is part of the quantities dx/de = [dg,/dg,dd,/de], which in turn are obtained as
follows: we consider the local problem (20) as an implicit function and conclude

1 do,
o-}irev ®O-:irev +go-21rev ®—8+Bl ®1 (22)

Cr q



R. Mahnken | International Journal of Solids and Structures 40 (2003) 6189-6209 6199

£[8,>_c[8]]:Qﬂgfazﬁkgzgﬂgfﬁr@

de Q¢ ' Oxde de T Qe (23a,b.c)

where J is the Jacobian defined in Eq. (21b). The expressions for Or/0¢ can be extracted from the general
expression for the variation ér summarized in Appendix A, and therefore we will not elaborate on more
details at this stage.

We close this section with the remark, that the local iteration procedure of the previous subsection and
the algorithmic tangent modulus of this subsection has been implemented into the UMAT subroutine of
the finite element program (ABAQUS-Version 6.3, 2002).

5.4. Some aspects on the sensitivity analysis for parameter identification

For parameter identification based on experimental testing a least-squares functional is considered as an
identification criterion in order to minimize the distance of the simulated data to the experimental data. A
general framework and technical details on application of a gradient based strategy for minimization of the
least-squares functional is presented elsewhere, see Mahnken et al. (1998), and shall not be repeated here.
For an analytical determination of the gradient a main objective becomes the determination of d"*'o[«]/dx.
At a further stage of the sensitivity analysis it is required to determine dx[«]/dx. Following Mahnken et al.
(1998), in the context of a time stepping, strain-controlled integration scheme the unknown vector x is the
result of the local problem (20) thus satisfying the condition r = r[k,x,"d,,"¢, &) = 0. Consequently the
relations

1. % = —l_l ?—K ,
dx oK
or or Oor od, or d'g™ Or degey
=t -
Ok Ox 0'd, de 07¢™ dx  Ogqoy dx

can be derived, and where as before J is the Jacobian defined in Eq. (21b). Please observe the analogous
structure of the relations (23¢) and (24.1). The expressions for the quantities dr/dk, dr/d"d,, or/d"&™,
Or/0gqey can be extracted from the general variation or summarized in Appendix A, and therefore we will
not elaborate on more details at this stage. Furthermore, we remark, that the quantities d"d,/dx, d"&"/dx,
which give the result (24) a recursion structure, are obtained in a so-called post-precessing step, and it
is noteworthy, that for the case of strain controlled experiments the quantity deg.,/dx is zero. For the case
of stress-controlled problems we also refer to the approach described in Mahnken et al. (1998).

where
(24)
2.

6. Representative examples
6.1. Primary and secondary creep for aluminum alloy AK4-1T

In this section the primary and secondary creep phases for an aluminum alloy AK4-1T at a temperature
of 473 K are simulated. The experimental data for this material were taken from Betten et al. (1998) and are
shown in Fig. 3 under uniaxial tension, uniaxial compression and pure torsion, respectively. As noted in
Betten et al. (1998) the equivalent inelastic strain is largest under pure torsion and smallest under uniaxial
compression.

The simulation is done with the constitutive equations of Table 1, where S = 3 has been chosen for the
number of modes, thus referring to the three types of experiments in tension, compression and shear, re-
spectively. Note, that those parts of the model activating isotropic damage are not taken into account in
this example. The results of the simulation are depicted in Fig. 3. A comparison with the experimental data



6200 R. Mahnken | International Journal of Solids and Structures 40 (2003) 6189-6209

0.006 - 170 MPa
N 180 MPa
> A
< . _'160MPa
5 0.004 |- A / a
> A -
= A 150 MPa
B 0.002 |- * N - L
£ /A
0.00C\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘
0 50 100 150 200 250
Time [h]
Time [h]
0 50 100 150 200 250
0.000 L | L I ]
- et T -160MPa
— o LTOUME
% -0.004 |- %o %,
= ° e
wn ° T~ e
2 e
% -0.008 - ~
]
o -180 MPa
[ )
- -0.012 L ® ¢-200 MPa
0.006
100 MPa A
-
= // 90 MPa
c 5 A
‘T 0.004 | s
n [ "
2 o, " 80 MPA
FCJ 0.002 — .. " -
0,000-'---Inn..I....|....|,,,,|
0 50 100 150 200 250
Time [h]

Fig. 3. Primary and secondary creep for AK4-1T: Comparison of simulation and experiment at 473 K under (top) tension, (middle)
compression, and (bottom) torsion at various stress states. Symbols and lines refer to experimental and simulated data, respectively.

demonstrates the capability of the proposed model to simulate the different characteristic behaviors for all
three stress modes.

Some remarks should be made concerning the strategy for obtaining the material parameters: These have
been determined in a consecutive manner, where firstly only the data for the tension test were used, such
that only the parameters 4;, n;, ¢, s were allowed to vary. The optimization procedure started with some
trial and error steps in order to overcome the local minima, followed by the gradient based strategy outlined
in Section 5.4. In a second phase the compression data were added in order to vary the parameters 4,, n,, q,
s in the optimization process, and lastly the torsion data were taken into account to find solutions for 43, n3,
q, s. In a fourth phase all parameters were allowed to vary thus giving the final solutions summarized in
Table 2. From Table 2 it becomes apparent, that all three stress modes require individual sets of Norton
parameters (4;,n;), i = 1,2, 3 thus reflecting the asymmetric effects of the material.
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Table 2
Primary and secondary creep for AK4-1T: Material parameters for tension, compression and torsion modes
B [GPa] G [GPa] gy [MPa] ¢ [MPa] s [-]
83.3 25.75 5.15 40.31 70.0
A1 [H] m [ 4> [H] n [ 43 [H] n3 [-]
0.696 8.38 0.368 8.35 0.171 6.7

6.2. Primary, secondary and tertiary creep for superalloy René 95

This section intends to simulate experimental results for a superalloy René 95 at a temperature of 649 °C.
The data for this material were taken from Stouffer and Dame (1996, p. 116) for a tension test and

a compression test as shown in Fig. 4. Note, that the tension data exhibit a tertiary part, which is not
observed in the compression test.
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Fig. 4. Primary, secondary and tertiary creep for René 95: (top) Comparison of simulation and experiment for the inelastic strain under
tension and compression at various stress states; (bottom) damage evolution for the tension tests. Symbols and lines refer to exper-
imental and simulated data, respectively.
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Table 3

Primary, secondary and tertiary creep for René 95: Material parameters corresponding to tension and compression modes
B [GPa] G [GPa] oo [GPa] q [MPa] s[-]
128.2 54.12 10.83 974.1 1158.2
41 [H] m [-] 4> [-] m [-] p [ P [
0.248 3.67 3.02d-3 2.5 3.5 0.0
B [ m [-] B, [ m [-] q [H 92 [-]
3.6 1.0 0.0 - 1.0 -

The simulation is performed with the constitutive equations of Table 1, where S = 2 has been chosen for
the number of modes, thus referring to the two types of experiments in tension and compression, respec-
tively. Note, that the damage part is activated only for the tension mode. The comparison of the simulation
in Fig. 4 with the experimental data illustrates, as in the previous example, the capability of the proposed
model to simulate the different characteristic behaviors for both stress modes with a very satisfying
agreement. In the second graph of Fig. 4 additionally the damage evolution is depicted.

The final results of the optimization process for all material parameters of Table 1 are summarized in
Table 3. Analogously to the first example these were obtained in a consecutive manner, were firstly the
compression data were used to obtain parameters for A,, n,, ¢, s. In a second phase the tension data were
added thus obtaining estimates for 4,, ny, ¢, s, By, m;, p;. In a third phase all parameters were allowed to
vary thus giving the final solutions summarized in Table 3. As in the previous example it becomes apparent,
that both stress modes require an individual set of Norton parameters (4;,#;), i = 1,2 thus reflecting also
here the asymmetric nature of the material.

6.3. Asymmetric relaxation effects in a square plate with circular hole

In this section the relaxation behavior of a square plate with circular hole shown in Fig. 5 is simulated
with the finite element method. Due to obvious symmetry conditions only a quarter of the specimen is

I 10 mm |
I | d
t f f f 124
D4 1
m T[]
N 11171 L
11171
UT17777/,
-
N A [
sSe= =
L S S
r=0.5mm =

[ 4 ] ] ] ]

Fig. 5. Square plate with circular hole: Geometry, finite element discretization and loading.
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considered in the plain strain calculation. The loading is displacement controlled, where the upper and
lower sides of the specimen are moved outwards, whereas the left and the right sides are moved inwards.
The values for the prescribed displacements are d; = 0.015 mm and the relaxation time is 1000 min. The
same material as in the previous section is assumed, i.e. a superalloy René 95 at a temperature of 649 °C
with material parameters of Table 3.

In the left upper plot of Fig. 6 the von Mises stress is depicted. This quantity is purely symmetric with
respect to a 90° rotation of the plate, thus illustrating its incapability to detect asymmetric effects. In the top
right plot of Fig. 6 the stress mode variable ¢ is depicted at the beginning of loading (¢ = 0.1 min), thus
illustrating the activation of tensile and compression regions. Along the rim of the hole, the model detects
compression regimes at the upper and lower part of the hole, whereas at the right and left part tension
regimes occur. The left bottom plot of Fig. 6 shows the equivalent inelastic strain e,. Here, due to the
comparatively small activation of damage the effect of asymmetry is almost negligible. In the right bottom
plot of Fig. 6 the damage variable 4, is shown. Much larger values are adopted in the tension regimes
compared to the compression regimes, thus illustrating the asymmetric effect.

Fig. 7 depicts the variation of von Mises stress ¢, and the damage variable 4, with respect to time. It
becomes apparent that the former exhibits only small variations along the rim of the hole during the whole
relaxation process. However, due to the different regimes of tension and compression the resulting damage
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Fig. 6. Square plate with circular hole: (top left) von Mises stress o, and (top right) stress mode variable ¢ at beginning of loading;
(bottom left) equivalent plastic strain e, and (bottom right) damage variable d, at end of loading (+ = 1000 min).
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Fig. 7. Square plate with circular hole: (top) von Mises stress o, (bottom) Damage variable d, as a function of time at two nodes of the
rim of hole.

variable becomes much larger at the right (and left) point of the hole compared to the upper (and lower)
point of the hole during the relaxation process.

6.4. Gasturbine blade subjected to temperature and centrifugal loads

In this section a gasturbine blade with finite element discretization shown in Fig. 8 is investigated. This
type of blade has been used formerly in gasturbine machines of ABB (now ALSTOM). The simulation is
performed with the commercial program (ABAQUS-Version 6.3, 2002), where the constitutive equations of
Table 1 have been implemented into the UMAT subroutine. Due to confidential agreement absolute values
for the finite element results of temperature, stress, stress mode factor and damage factor are not given in
the following result plots.

The component is subjected to thermal loading with temperature distribution in the left plot of Fig. 9
and centrifugal loading arising from rotation with 50 Hz. As in the previous section the superalloy René 95
is considered as the material. In order to take into account a (fictitious) temperature dependence, the factors
of evolution for damage and equivalent plastic strain of Table 1 are multiplied with a (fictitious) factor

b =exp (T;TTO> (25)
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Fig. 8. Gasturbine blade: finite element discretization.

Fig. 9. Gasturbine blade: (Left) temperature distribution, dark areas in the pressure region correspond to hot areas. (Right) von Mises
equivalent stress at beginning of loading, dark areas near the fillet region correspond to high stresses.
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Fig. 10. Gasturbine blade: (Left) stress state variable ¢ at beginning of loading, dark areas on the pressure side correspond to tension
mode. (Right) damage variable d, at end of loading (¢ = 30000 h), dark areas near the fillet region correspond to damaged areas.

Here T is the material temperature, 7y = 649 °C is the temperature for the material parameters of Table 3
and o« = 0.1 has been chosen. Tetrahedral elements have been used in the finite element discretization such
that the number of nodes is 184248, the number of elements is 107959 and the degrees of freedom is
552744,

The right plot of Fig. 9 shows the von Mises equivalent stress at the beginning of loading after t = 15
min. The corresponding stress state variable & is depicted in the left plot of Fig. 10. It can be seen, that the
combination of centrifugal and thermal loading results into the different tensile and compression regions.
Naturally the tensile regions dominate, which is due to the centrifugal loading. The resulting damage
variable d, is shown in the right plot of Fig. 10. It becomes apparent that larger values are adopted in
tension regimes with highest temperatures on the pressure side and near the fillet region with higher von
Mises stresses.

7. Summary and conclusions

In this contribution a constitutive framework has been presented, which enables to simulate the creep
deformation with characteristic behavior dependent on the loading state. The key idea here is an additive
decomposition of the inelastic strain rate, where each of the quantities is weighted with a scalar valued
function, which is dependent on the so-called stress mode angle. A main advantage of the concept is, that
the stress modes can directly be associated to certain characteristic loading scenarios, such as tension,
compression and shear, which are experimentally investigated in the laboratory.

In a further part of the paper the numerical implementation of the model equations is described, in-
cluding the derivation of the algorithmic tangent operator for the equilibrium iteration and the sensitivity
terms for parameter identification, each of them consistent with the underlying integration algorithm. The
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integration algorithm and the algorithmic tangent operator have been implemented into the UMAT sub-
routine of the commercial finite element program (ABAQUS-Version 6.3, 2002).

Overall, the examples highlight the capability of the model to simulate asymmetric creep effects for two
different materials, an aluminum alloy AK4 and a superalloy René 95. The latter material was also used to
investigate the relaxation behavior of a square plate with circular hole and the evolution of creep damage in
a large scale gasturbine blade.

The proposed approach is regarded as very general in order to simulate asymmetric effects for creep.
Future work should take into account hydrostatic stress states, kinematic hardening and multiaxial stress
states. Furthermore the aspects of damage induced anisotropy and finite strains will constitute an area of
future research work.
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Appendix A. Variations of significant quantities

In the sequel variations of significant quantities necessary for evaluation of the Jacobian (21b), the
quantities Or/0¢ appearing on the r.h.s. in Eq. (23¢) necessary for determination of the alogrithmic tangent
modulus and the quantities dr/0x appearing in Eq. (24), necessary for the sensitivity analysis are derived. In
order to alleviate the derivations, the symbolic algebra program MuPAD (Gerhard et al., 2000) has been
used on a LINUX platform. For completeness we remark that variations w.r.t. to the elastic constants G
and B and to the scaling factor ¢, are not taken into account.
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Variations of w;[&], wy[&], ws[€] (see Eq. (11))
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